Imputation of missing values of tumour stage in population-based cancer registration
نویسندگان
چکیده
BACKGROUND Missing data on tumour stage information is a common problem in population-based cancer registries. Statistical analyses on the level of tumour stage may be biased, if no adequate method for handling of missing data is applied. In order to determine a useful way to treat missing data on tumour stage, we examined different imputation models for multiple imputation with chained equations for analysing the stage-specific numbers of cases of malignant melanoma and female breast cancer. METHODS This analysis was based on the malignant melanoma data set and the female breast cancer data set of the cancer registry Schleswig-Holstein, Germany. The cases with complete tumour stage information were extracted and their stage information partly removed according to a MAR missingness-pattern, resulting in five simulated data sets for each cancer entity. The missing tumour stage values were then treated with multiple imputation with chained equations, using polytomous regression, predictive mean matching, random forests and proportional sampling as imputation models. The estimated tumour stages, stage-specific numbers of cases and survival curves after multiple imputation were compared to the observed ones. RESULTS The amount of missing values for malignant melanoma was too high to estimate a reasonable number of cases for each UICC stage. However, multiple imputation of missing stage values led to stage-specific numbers of cases of T-stage for malignant melanoma as well as T- and UICC-stage for breast cancer close to the observed numbers of cases. The observed tumour stages on the individual level, the stage-specific numbers of cases and the observed survival curves were best met with polytomous regression or predictive mean matching but not with random forest or proportional sampling as imputation models. CONCLUSIONS This limited simulation study indicates that multiple imputation with chained equations is an appropriate technique for dealing with missing information on tumour stage in population-based cancer registries, if the amount of unstaged cases is on a reasonable level.
منابع مشابه
Influence of Pattern of Missing Data on Performance of Imputation Methods: An Example from National Data on Drug Injection in Prisons
Background Policy makers need models to be able to detect groups at high risk of HIV infection. Incomplete records and dirty data are frequently seen in national data sets. Presence of missing data challenges the practice of model development. Several studies suggested that performance of imputation methods is acceptable when missing rate is moderate. One of the issues which was of less concern...
متن کاملAccuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)
Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...
متن کاملچند رویکرد برخورد با مقادیر گمشده متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی بالینی
Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملValidity of using multiple imputation for "unknown" stage at diagnosis in population-based cancer registry data
BACKGROUND The multiple imputation approach to missing data has been validated by a number of simulation studies by artificially inducing missingness on fully observed stage data under a pre-specified missing data mechanism. However, the validity of multiple imputation has not yet been assessed using real data. The objective of this study was to assess the validity of using multiple imputation ...
متن کامل